
International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2580
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

A Dynamic Programming Approach for Fault Optimized
Sequence Generation in Regression Testing

Monika1, Dr.Paramjit Singh2

1 Department of Computer Science and Engineering , PDM College of Engineering, Bahadurgarh, Haryana
tuteja.monika710@gmail.com

2Professor, PDM College of Engineering, Bahadurgarh, Haryana
director_engg@pdm.ac.in

Abstract- Delivered software is required to be modified
because of some fault, user requirement or because of some
new included feature. In such case, when the code of some
software is modified, it is also required to test the software
again. But instead of testing the complete software again,
only few selected test cases are regenerated. It is desired
that there should be an effective approach so that an
optimized solution for test sequence generation can be
found out with low cost. Several researchers have used
different techniques for fault optimized and cost effective
test sequence generation and one of them is DYNAMIC
PRIORITIZATION technique which is used for scheduling
test cases in an order so that their effectiveness can be
increased at meeting some performance goal. In the
proposed work, a two level prioritization approach is
recommended for the selection of the test cases and the
sequence. In the first layer, the modified code blocks will be
analyzed and the relative interaction with the other modules
will be analyzed. Based on the number of interacted
modules, the first level of prioritization will be done. After
that these selected modules will be re analyzed under the
criticality parameter. The criticality will be categorized
based on the error or the fault type in a specific module.
Based on this criticality some cost will be assigned to these
test cases. Finally a dynamic programming approach will
be implemented to identify the test sequence so that the cost
of the regression testing will be minimized. The presented
work will give an optimized solution for the test sequence
generation with low cost.
Keywords: Regression testing, Test case Prioritization,
Dynamic Prioritization, Test sequence generation

1. INTRODUCTION
Regression testing is any type of software testing that seeks
to uncover software errors by retesting a modified program.
The intent of regression testing is to provide a general
assurance that no additional errors were introduced in the
process of fixing other problems or modifications of
software [Roman,2004]. Regression test suites are often
simply test cases that software engineers have previously
developed and that have been saved so that they can be
used later to perform regression testing [Alexey,2006].Re
executing all the test cases requires enormous amount of
time thus makes the testing process inefficient. Studies
show that regression testing accounts for 80% of the testing
costs. The three main approaches to reduce the cost of

regression testing include test case selection, test suite
minimization and test case prioritization.

1.1 Key Issues in Regression Testing

Many issues can be addressed in the context of Regression
testing to reduce the cost of regression testing. A lot of
challenges and problems are posing a great threat to the
technology. Here some most important issues are presented
that have dominated the field of research since the evolution
of Regression testing.

A. Regression Test Selection

Regression test selection techniques select a subset of valid
test cases from an initial test suite(T) to test that the affected
but unmodified parts of a program continue to work
correctly. Use of an effected regression test selection
technique can help to reduce the testing costs in
environments in which a program undergoes frequent
modifications. Regression test selection essentially consists
of two major activities:

• Identification of the affected parts –This involves
identification of the unmodified parts of the
program that are affected by the modifications.

• Test case selection- This involves identification of
a subset of test cases from the initial test suite T
which can effectively test the unmodified parts of
the program [Swarnendu , 2011].

B. Test Case Minimization

Test case minimization means reducing the test suite size to
a minimal subset to maintain the same level of coverage as
the original test suite. There is empirical evidence indicating
that fault detection capabilities of test suites can be severely
compromised by minimization [Rothermel, 1998]. The
significance of minimization is that the resulting minimized
set has the same coverage with respect to a certain criterion
(say C) as the original set. We do minimization only on a
subset of regression tests determined by using the
modification based test selection technique. The advantages
are (1) reducing the amount of work required by test set
minimization (2) having a higher chance to select more tests
on which the new and the old programs produce different
outputs, and (3) having a lesser chance to include test cases
that fail to distinguish the new program from the old
[Eric,1997].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2581
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

C. Test Case Prioritization

Test case prioritization techniques prioritize and schedule
test cases in an order that attempts to maximize some
objective function .For example, software test engineers
might wish to schedule test cases in an order that achieves
code coverage at the fastest rate possible, exercises features
in order of expected frequency of use, or exercises sub
systems in an order that reflects their historical propensity to
fail. When the time required to run all the test cases in test
suite is sufficiently long, the benefits offered by test case
prioritization methods become more significant
[Siripong,2010].

D. Sequence Generation

To conduct efficient and effective regression testing, a test
case sequence is generated from the existing regression
suite. First, construct a superset of all regression tests that
should be used to ensure that a new program preserves the
desired functionality of the old program .Such construction
is done by a modification based test selection. Second, if
necessary, use prioritization or minimization for further test
screening based on those selected by modification
[Eric,1997].

E. Obsolete, Retestable and Redundant Test Cases

Test cases in the initial test suite can be classified as
obsolete , retest able and redundant test cases. Obsolete test
cases are no more valid for the modified program. Retest
able test cases are those test cases that execute the modified
and the affected parts of the program and need to be rerun
during the regression testing. Redundant test cases execute
only the unaffected parts of the program. Although these are
valid test cases ,these can be omitted from the regression
test suite without compromising the quality of testing
[Leung,1989].

F. Fault-revealing Test Cases

 A test case t є T is said to be fault-revealing for a program
P, if it can potentially cause P to fail by producing incorrect
outputs for P [Rothermel,1996].

G. Modification-traversing Test Cases

A test case t є T is modification-traversing for P and P′, if
the execution traces of t on P and P′ are different
[Rothermel,1996]. In other words, a test case t is said to be
modification-traversing if it executes the modified regions
of code in P′. For a given original program and its modified
version, the set of modification-traversing test cases is a
super-set of the set of the modification-revealing test cases.

1.2 Need of Sequence Generation in Regression Testing

In above we discussed the basics of Regression testing like
introduction and key issues but the main important point
here is sequence generation and is one of the main
challenges of regression testing. It is noticed that several
companies have "constant test cases set" for regression
testing and they are executed irrespective of the number and
type of bug fixes. Sometimes this approach may not find all
side effects in the system and in some cases it may be
observed that the effort spent on executing test cases for
regression testing can be minimized if some analysis is done
to find out what test cases are relevant and what are not. To
conduct efficient and effective regression testing, a test case
sequence is generated from the existing regression suite.
First, construct a superset of all regression tests that should
be used to ensure that a new program preserves the desired
functionality of the old program . Second, if necessary, use
prioritization or minimization for further test screening
based on those selected by modification [Eric,1997].

2. REGRESSION TESTING APPROACHES
A number of different approaches have been studied to aid
the regression testing process. The three major branches
include test suite minimization, test case selection and test
case prioritization. Test suite minimization is a process that
seeks to identify and then eliminate the obsolete or
redundant test cases from the test suite. Test case selection
deals with the problem of selecting a subset of test cases
that will be used to test the changed parts of the software.
Finally, test case prioritization concerns the identification of
the ‘ideal’ ordering of test cases that maximizes desirable
properties, such as early fault detection [Yoo,2007].

2.1 Test Suite Minimization Approach
Test case minimization techniques reduce the test suite size
to a minimal subset to maintain the same level of coverage
as the original test suite. There is empirical evidence
indicating that fault detection capabilities of test suites can
be severely compromised by minimization
[Rothermel,1998]. The significance of minimization is that
the resulting minimized set has the same coverage with
respect to a certain criterion (say C) as the original set. We
do minimization only on a subset of regression tests
determined by using the modification based test selection
technique. The advantages are (1) reducing the amount of
work required by test set minimization (2) having a higher
chance to select more tests on which the new and the old
programs produce different outputs, and (3) having a lesser
chance to include test cases that fail to distinguish the new
program from the old [Eric,1997]. Test suite minimization
techniques aim to identify redundant test cases and to

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2582
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

remove them from the test suite in order to reduce the size
of the test suite.

2.2 Regression Test Selection Approach
Regression test selection techniques select a subset of valid
test cases from an initial test suite(T) to test that the affected
but unmodified parts of a program continue to work
correctly. Use of an effected regression test selection
technique can help to reduce the testing costs in
environments in which a program undergoes frequent
modifications. Regression test selection essentially consists
of two major activities:

• Identification of the affected parts –This involves
identification of the unmodified parts of the
program that are affected by the modifications.

• Test case selection- This involves identification of
a subset of test cases from the initial test suite T
which can effectively test the unmodified parts of
the program. The aim is to be able to select the
subset of test cases from the initial test suite that
has the potential to detect errors induced on
account of the changes [Swarnendu,2011].The use
of an RTS technique can reduce the cost of
regression testing compared to the retest- all
approach. The retest –all approach is considered
impractical on account of cost resource and
delivery schedule constraints that projects are
frequently subjected to [Leung,1991].

2.3 Test Case Prioritization Approach

Test case prioritization techniques prioritize and schedule
test cases in an order that attempts to maximize some
objective function. For example, software test engineers
might wish to schedule test cases in an order that achieves
code coverage at the fastest rate possible, exercises features
in order of expected frequency of use, or exercises
subsystems in an order that reflects their historical
propensity to fail. When the time required to execute all test
cases in a test suite is short, test case prioritization may not
be cost effective - it may be most expedient simply to
schedule test cases in any order. When the time required to
run all test cases in the test suite is sufficiently long, the
benefits offered by test case prioritization methods become
more significant [Dennis, 2006]. Although test case
prioritization methods have great benefits for software test
engineers, there are still outstanding major research issues
that should be addressed. The examples of major research
issues are: (a) existing test case prioritization methods
ignore the practical weight factors in their ranking algorithm
(b) existing techniques have an inefficient weight algorithm
and (c) those techniques are lack of the automation during
the prioritization process. Test case prioritization techniques
provide a way to schedule and run test cases, which have
them highest priority in order to provide earlier detect faults

[Siripong, 2010]. Some techniques related to prioritization
approach are as follows:

2.3.1 Customer Requirement-Based Prioritization
Techniques
 Customer requirement-based techniques are methods to
prioritize test cases based on requirement documents. many
weight factors have been used in these techniques, including
custom-priority, requirement complexity and requirement
volatility. Test case prioritization techniques and use of
several factors to weight (or rank) the test cases are
introduced. Those factors are the customer-assigned priority
(CP), requirements complexity(RC) and requirements
volatility (RV). Additionally, values are assigned (1 to 10)
for each factor for the measurement. Here higher factor
values indicate a need for prioritization of test case related
to that requirement [Jeffery,1999].
Weight prioritization (WP) measures the important of
testing a requirement earlier.
WP = Σ (PFvalue* PFweight); PF=1 to n (1)
Where:
• WP denotes weight prioritization that measures the
importance of testing a requirement.
• PFvalue is the value of each factor, like CP, RC and RV.
• PFweight is the weight of each factor, like CP, RC and RV.
Test cases are then ordered such that the test cases for
requirements with high WP are executed before others
[Siripong,2010].
Two particular goals of test case prioritization approaches:
(a) to improve user perceived software quality in a cost
effective way by considering potential defect severity and
(b)to improve the rate of detection of severe faults during
system level testing of new code and regression testing of
existing code [Lehmann,2000].
General test case prioritization technique and associated
metric based on varying testing requirement priorities and
test case costs. An algorithm is proposed that weights test
cases by the following factors: (a) test history (b) additional
requirement coverage (c) test case cost and (d) total
requirement coverage [Xiaofang,1988].
.
2.3.2 History-based Approach
A prioritization technique based on association clusters of
software artifacts obtained by a matrix analysis called
singular value decomposition [Sherriff, 2007]. The
prioritization approach depends on three elements:
association clusters, relationship between test cases and files
and a modification vector. Association clusters are
generated from a change matrix using SVD; if two files are
often modified together as a part of a bug fix, they will be
clustered into the same association cluster. Each file is also
associated with test cases that affect or execute it. Finally, a
new system modification is represented as a vector in which
the value indicates whether a specific file has been
modified. Using the association clusters and the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2583
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

modification vector, it is then possible to assign each file
with a priority that corresponds to how closely the new
modification matches each test case. One novel aspect of
this approach is that any software artifact can be considered
for prioritization. Sherriff et al. noted that the faults that are
found in non-source files, such as media files or
documentation, can be as severe as those found in source
code [Yoo,2007].

2.3.3 Coverage-based Techniques

Test coverage analysis is a measure used in software testing
known as code coverage analysis for practitioners. It
describes the quantity of source code of a program that has
been exercised during testing. It is a form of testing that
inspects the code directly and is therefore a form of white
box testing. The following lists a process of coverage-based
techniques: (a) finding areas of a program not exercised by a
set of test cases (b) creating additional test cases to increase
coverage (c) determining a quantitative measure of code
coverage, which is an indirect measure of quality and (d)
identifying redundant test cases that do not increase
coverage. The coverage-based technique is a structural or
white-box testing technique. Structural testing compares test
program behavior against the apparent intention of the
source code. This contrasts with functional or black-box
testing, which compares test program behavior against a
requirements specification. It examines how the program
works, taking into account possible pitfalls in the structure
and logic. Functional testing examines what the program
accomplishes, without regard to how it works internally.
The coverage based techniques are methods to prioritize test
cases based on coverage criteria, such as requirement
coverage, total requirement coverage, additional
requirement coverage and statement coverage
[Siripong,2010].

2.3.4 Cost Effective-Based Prioritization Techniques

Cost effective-based techniques are methods of prioritizing
test cases based on costs, such as cost of analysis and cost of
prioritization. Many researchers have researched this area.
The following paragraphs present existing cost effective-
based test case prioritization techniques. The cost of a test
case is related to the resources required to execute and
validate it. Additionally, cost-cognizant prioritization
requires an estimate of the severity of each fault that can be
revealed by a test case. Four practical code coverage- based
heuristic techniques are: total function coverage
prioritization (fn-total), additional function coverage
prioritization (fn-addtl), total function difference-based
prioritization (fn-diff-total) and additional function
difference-based prioritization(fn-diff-addtl) [Alexey,2002].
Cost models for prioritization that take these costs into
account. They defined the following variables to prioritize

test cases: cost of analysis, Ca(T) and cost of the
prioritization algorithm, Cp(T).
WP = Ca(T) + Cp(T)
Where:
• WP is a weight prioritization value for each test case.
• Ca(T) includes the cost of source code analysis, analysis of
changes between old and new versions, and collection of
execution traces.
• Cp(T) is the actual cost of running a prioritization tool,
and, depending on the prioritization algorithm used, can be
performed during either the preliminary or critical phase
[Alexy,2002].

3. PROPOSED WORK

The proposed work is about the selection of the test
sequence based on some defined constraints. At the initial
level, we need to define a database to maintain all the code
modules along with test cases respective to the project.
These code modules will be defined respective to the
changes occur in the module as well the relation with other
modules. This module interaction analysis is the important
constraint for the selection of the test case for regression
testing.
Once the test cases are identified, the next work is about to
analyze the module criticality. The criticality will be
analyzed based on the number of faults and the type of
faults. Along with these two parameters the cost of the
relative test case generation will be defined.
The prioritization would be done according to the criticality
of the test as well as the code on which the test is occurred.
Finally, the test sequence will be generated by using the
dynamic programming approach. The test sequence will be
identified with minimum test cost.

3.1 Overall Design

The overall design of the proposed work is given
as under:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2584
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Figure 1 Overall Design

3.1.1 Work Flow
The below diagram shows the work flow for the proposed

work:

Figure 2 Work Flow

4. RESULTS
4.1 Example Program
Void main()
{
Int a,b,c;
Printf(“Enter number”);
Scanf(“%d%d”,&a,&b);
C=sqrt(a)/b;
Printf(“%d”,c);
}
4.1.1 Generated Test Cases
Test Cases

1. Variable A Assigned Some Value;
2. Variable B Assigned Some Value;
3. Variable C Assigned Some Value;
4. Check A for 0
5. Check B for 0
6. Check A for –ve value
7. Check B for –ve value
8. Check for input specifier for A,B
9. Check for Expression Result of C
10. check for output Specifier for C

4.1.2 Prioritization

Critical Test cases
Here in given program Test Case 5 will return failure as of
B is 0
Here Test Case 6 will return Error if A is I –ve
Here Test Case 9 will return error if any of Case 5 or 6 is
false
Case 10 will not return correct result if specifier is wrong

4.1.3 Approach

Preliminary Check

1. No Variable is unassigned (CASE 1,2,3)
2. Check format specifier for all values (Case

8,10)
Static Test
 1 No Variable is unassigned (CASE 1,2,3)
 2 Check format specifier for all values (Case 8,10)
Dynamic Test
 All other Test Cases are dynamic

Start

Get the State Diagram or Activity Diagram from Existing Case
Study

Perform the Initial Estimation or Drive the Fault based Analysis
of Each State

Find the estimation of Future Aspect of Each State Respective
of Maintenance

Assign the Cost to each state based of these two parameters

Present the state diagram in the form of weighted graph

Perform the Dynamic Programming approach to Find optimal
Path

Present the Minimum cost path as final result path

Stop

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2585
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4.2 Results

As the general case we have assigned the random cost to

each test case and perform the analysis based on this

random cost assignment. The output driven based on this

assignment is shown as under.

a) The obtained Test Sequence of this random cost

assignment is given as

3 9 4 1 10 7 8 5 6 2

b) The cost driven from the on given approach is given as

 Cost = 11.0547
Sequence can be

1, 2, 3,8,10
 4, 5,6,7,9

Modified Sequence will be

• Assignment Test
• Format specifier test
• Input values test
• Output values test

Here are some graphs showing the results.

Figure 3: Cost Analysis (Proposed Vs. Existing)

Figure 4 : Cost Analysis (Proposed Approach)

Figure 5: Cost Analysis (Proposed Approach)

Here figure is showing the comparative analysis of different
cost testing path cost in case of fault based test path
estimation.

5. CONCLUSION AND FUTURE WORK
In this present work we have improved the existing path
testing approach by implementing the dynamic
programming approach. A software project is the sequence
of correlated code modules where some test cases are
associated with each module. In this work, we have defined
these test cases respective to the fault occurrence parameter.
According the importance of test cases, some priority value
is assigned to each test case. After this the dynamic
programming approach is implemented to find the best path
respective to the low cost and less chances of fault
occurrence during the testing process.
The main parameter taken for the research work is chances
of fault occurrence. The work can be extended in different
directions:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 9, September-2013 2586
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

1. We can also use some more optimization
approaches to get the better results such as
Genetics or the Neural Network

2. We can also use some different parameters to
estimate the test path cost such as number of
connections with next and previous code
modules etc

References
[1] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg
Rothermel, Sebastian Elbaum, Cost-cognizant Test Case
Prioritization,” Technical Report TR-UNL-CSE-2006-004,
Department of Computer Science and Engineering,
University of Nebraska–Lincoln, Lincoln, Nebraska, U.S.A.,
March 2006.
[2] Alexey G. Malishevsky, Gregg Rothermel and
Sebastian Elbaum, Modeling the Cost-Benefits Tradeoffs
for Regression Testing Techniques, Proceedings of the
International Conference on Software Maintenance
(ICSM’02), 2002.
[3] Dennis Jeffrey and Neelam Gupta, Test Case
Prioritization Using Relevant Slices , In Proceedings of the
30th Annual International Computer Software and
Applications Conference, Volume 01, 2006, pages 411-420,
2006.
 [4] Eric W. Wong, J. R. Horgan, Saul London, Hira
Agrawal Bell Communications Research 445 South Street
Morristown, NJ 07960.
[5] Jeffery von Ronne, Test Suite Minimization: An
Empirical Investigation, 1999.
[6] Korel B. and Laski J., Algorithmic software fault
localization , Annual Hawaii International Conference on
System Sciences, pages 246–252, 1991.
[7] Lehmann E. and Wegener J., Test case design by
means of the CTE XL, In Proc. of the 8th European
International Conf. on Software Testing, Analysis & Review
(EuroSTAR 2000), 2000.
[8] Leung H. and White L., A cost model to compare
regression test strategies. In Proceedings of the Conference
on Software Maintenance, pages 201–208, 1991.
[9] Onoma K., W.-T. Tsai, M. Poonawala, and
H.Suganuma, Regression testing in an industrial
environment, Comm. Of the ACM, 41(5):81–86,1988.
[10] Rothermel G., M. J. Harrold, J. Ostrin, and C.
Hong, An empirical study of the effects of minimization on
the fault detection capabilities of test suites ,in Proc. of the
International Conference on Software Maintenance, 1998,
pp. 34–43.
 [11] Savenkov R.,How to become a software tester.
(Roman Savenkov Consulting, 2004)
 [12] Sherriff M, Lake M, Williams L. Prioritization of
regression tests using singular value decomposition with
empirical change records. Proceedings of the The 18th IEEE

International Symposium on Software Reliability (ISSRE
2007), IEEE Computer Society: Washington, DC, USA,
2007; 81–90.
 [13] Siripong Roongruangsuwan, Jirapun Daengdej,”
Test case prioritization techniques”, Autonomous System
Research Laboratory, Science and Technology, Assumption
University, Thailand.(2010).
 [14] Swarnendu Biswas and Rajib Mall ,Dept. of
Computer Science and Engineering IIT Kharagpur, India -
721302
[15] Yoo S., M. Harman, “Regression testing
Minimisation, selection and prioritization, King’s College
London, Centre for Research on Evolution, Search &
Testing, Strand, London, WC2R 2LS, UK(2007)

IJSER

http://www.ijser.org/

